

Radar Line of Sight Assessment Report

Brockwell Energy - Breezy Hill Wind Farm

Date: 9th January 2025 Author: Linda-Jean Worley Revision: Issue 1.0 Osprey Ref: 72049 001

This document is of UK origin and has been prepared by Osprey Consulting Services Limited (Osprey) and, subject to any existing rights of third parties, Osprey is the owner of the copyright therein. The document is furnished in confidence under existing laws, regulations and agreements covering the release of data. This document contains proprietary information of Osprey and the contents or any part thereof shall not be copied or disclosed to any third party without Osprey's prior written consent.

© Osprey Consulting Services Limited 2024 Harston Mill, Royston Road Harston, Cambridge CB22 7GG 01172 422533 / enquiries@ospreycsl.co.uk Registered in England and Wales under No: 06034579

Document Details

Reference	Description	
Document Title	Radar Line of Sight Assessment Report	
	Brockwell Energy - Breezy Hill Wind Farm	
Document Ref	72049 001	
Issue	Issue 1.0	
Date	9 th January 2025	
Client Name	Brockwell Energy Ltd	
Classification	Commercial in Confidence	

Issue	Amendment	Date
Draft A	Initial Draft	8 th January 2025
Issue 1.0	Initial Issue	9 th January 2025

Approval Level	Authority	Name
Author	Osprey CSL	Linda-Jean Worley
Reviewer	Osprey CSL	Foz Binning

ii

Executive Summary

Brockwell Energy Limited are promoting the 80MW wind scheme, Breezy Hill Wind which is located approximately 13 kilometres (km) south-east of Ayr, 8.5 km south-west of Cumnock and 4.5 km north of Dalmellington. As part of the Environment Impact Assessment process, aviation impacts are being considered.

The Developer has commissioned Osprey Consulting Services Limited to conduct technical assessments to determine the likelihood of visibility Breezy Hill Wind Farm to the following three Air Traffic Control radars operated by various Air Navigation Service Providers:

- NATS Great Dun Fell Radar
- NATS Lowther Hill Radar
- Glasgow Prestwick Airport Terma Radar

The Air Navigation Service Providers are responsible for the technical safeguarding of their Communications Navigation and Surveillance systems in accordance with Civil Aviation Authority requirements. To establish whether the Wind Turbine Generators of Breezy Hill Wind Farm are likely to be electronically visible to these radars and have a potential safeguarding issue, Radar Line of Site Assessments have been conducted, the results of which are reported in this document.

Conclusions

The Line of Site Assessments conducted conclude that all Wind Turbine Generators within the Breezy Hill Wind Farm development are expected to have a direct optical visibility to the Lowther Hill and Glasgow Prestwick Terma Radars and therefore without suitable mitigations might cause an impact upon the Air Traffic Services provided by the respective Air Navigation Service Provider.

The assessment indicates that none of the Wind Turbine Generators within the Breezy Hill Wind Farm development will be visible to the Great Dun Fell Radar.

Recommendations

Osprey recommends that NATS and Glasgow Prestwick Airport as the respective Air Navigation Service Providers operating the affected radars, review the results of this assessment against their operational coverage areas and identify suitable and appropriate mitigations that could reduce the operational impacts to a satisfactory level.

Table of Contents

1	Introduction1
1.1	Purpose1
1.2	Scope1
1.3	Abbreviations
2	Radar Line of Sight Assessment5
2.1	Introduction
2.2	Overview5
2.3	Scope
2.4	Methodology
2.5	Results
2.6	Conclusions
2.7	Recommendations
A1	LOS Terrain Elevation Profiles A1-1
A1.1	Great Dun Fell Radar LOS Assessment Profiles for the Development
A1.2	Lowther Hill Radar LOS Assessment Profiles for the Development A1-11
A1.3	GPA Terma Radar LOS Assessment Profiles for the Development A1-21

Table of Figures

Figure 1 - Example LOS Profile Path	6
Figure 2 - Great Dun Fell Radar LOS Profile to T01	A1-1
Figure 3 - Great Dun Fell Radar LOS Profile to T02	
Figure 4 - Great Dun Fell Radar LOS Profile to T03	A1-2
Figure 5 - Great Dun Fell Radar LOS Profile to T04	A1-2
Figure 6 - Great Dun Fell Radar LOS Profile to T05	A1-3
Figure 7 - Great Dun Fell Radar LOS Profile to T06	
Figure 8 - Great Dun Fell Radar LOS Profile to T07	A1-4
Figure 9 - Great Dun Fell Radar LOS Profile to T08	A1-4
Figure 10 - Great Dun Fell Radar LOS Profile to T09	A1-5
Figure 11 - Great Dun Fell Radar LOS Profile to T10	
Figure 12 - Great Dun Fell Radar LOS Profile to T11	A1-6
Figure 13 - Great Dun Fell Radar LOS Profile to T12	A1-6
Figure 14 - Great Dun Fell Radar LOS Profile to T13	A1-7
Figure 15 - Great Dun Fell Radar LOS Profile to T14	
Figure 16 - Great Dun Fell Radar LOS Profile to T15	A1-8
Figure 17 - Great Dun Fell Radar LOS Profile to T16	A1-8
Figure 18 - Great Dun Fell Radar LOS Profile to T17	A1-9
Figure 19 - Great Dun Fell Radar LOS Profile to T18	A1-9
Figure 20 - Great Dun Fell Radar LOS Profile to T19	A1-10

iv

Figure 21 - Great Dun Fell Radar LOS Profile to T20 A1-10
Figure 22 – Lowther Hill Radar LOS Profile to T01 A1-11
Figure 23 - Lowther Hill Radar LOS Profile to T02 A1-11
Figure 24 - Lowther Hill Radar LOS Profile to T03 A1-12
Figure 25 - Lowther Hill Radar LOS Profile to T04 A1-12
Figure 26 - Lowther Hill Radar LOS Profile to T05 A1-13
Figure 27 - Lowther Hill Radar LOS Profile to T06 A1-13
Figure 28 - Lowther Hill Radar LOS Profile to T07 A1-14
Figure 29 - Lowther Hill Radar LOS Profile to T08 A1-14
Figure 30 - Lowther Hill Radar LOS Profile to T09 A1-15
Figure 31 - Lowther Hill Radar LOS Profile to T10 A1-15
Figure 32 - Lowther Hill Radar LOS Profile to T11 A1-16
Figure 33 - Lowther Hill Radar LOS Profile to T12 A1-16
Figure 34 - Lowther Hill Radar LOS Profile to T13 A1-17
Figure 35 - Lowther Hill Radar LOS Profile to T14 A1-17
Figure 36 - Lowther Hill Radar LOS Profile to T15 A1-18
Figure 37 - Lowther Hill Radar LOS Profile to T16 A1-18
Figure 38 - Lowther Hill Radar LOS Profile to T17 A1-19
Figure 39 - Lowther Hill Radar LOS Profile to T18 A1-19
Figure 40 - Lowther Hill Radar LOS Profile to T19 A1-20
Figure 41 - Lowther Hill Radar LOS Profile to T20 A1-20
Figure 42 – GPA Terma Radar LOS Profile to T01 A1-21
Figure 43 - GPA Terma Radar LOS Profile to T02 A1-21
Figure 44 - GPA Terma Radar LOS Profile to T03 A1-22
Figure 45 - GPA Terma Radar LOS Profile to T04 A1-22
Figure 46 - GPA Terma Radar LOS Profile to T05 A1-23
Figure 47 - GPA Terma Radar LOS Profile to T06 A1-23
Figure 48 - GPA Terma Radar LOS Profile to T07 A1-24
Figure 49 - GPA Terma Radar LOS Profile to T08 A1-24
Figure 50 - GPA Terma Radar LOS Profile to T09 A1-25
Figure 51 - GPA Terma Radar LOS Profile to T10 A1-25
Figure 52 - GPA Terma Radar LOS Profile to T11 A1-26
Figure 53 - GPA Terma Radar LOS Profile to T12 A1-26
Figure 54 - GPA Terma Radar LOS Profile to T13 A1-27
Figure 55 - GPA Terma Radar LOS Profile to T14 A1-27
Figure 56 - GPA Terma Radar LOS Profile to T15 A1-28
Figure 57 - GPA Terma Radar LOS Profile to T16 A1-28
Figure 58 - GPA Terma Radar LOS Profile to T17 A1-29
Figure 59 - GPA Terma Radar LOS Profile to T18 A1-29
Figure 60 - GPA Terma Radar LOS Profile to T19 A1-30
Figure 61 - GPA Terma Radar LOS Profile to T20 A1-30

Table of Tables

. 2
. 2
. 2
. 3
. 4
•

v

Table 6 - Great Dun Fell Radar - LOS Results	8
Table 7 - Lowther Hill Radar - LOS Results	9
Table 8 - GPA Terma Radar - LOS Results 1	1

vi

1 Introduction

1.1 Purpose

Brockwell Energy Limited (Ltd) ("the Developer") are promoting the 80MW wind scheme, Breezy Hill Wind Farm ("the Development") which is located approximately 13 kilometres (km) south-east of Ayr, 8.5 km south-west of Cumnock and 4.5 km north of Dalmellington. As part of the Environment Impact Assessment (EIA) process, aviation impacts are being considered.

The Developer has commissioned Osprey Consulting Services Limited (Osprey) to conduct technical assessments to determine the likelihood of visibility the Development to a number of Air Traffic Control (ATC) radars operated by two Air Navigation Service Providers (ANSPs).

ANSPs are responsible for the technical safeguarding of their Communications Navigation and Surveillance (CNS) systems in accordance with Civil Aviation Authority (CAA) requirements. To establish whether the Wind Turbine Generators (WTGs) of the Development are likely to be electronically visible to these radars and have a potential safeguarding issue, Radar Line of Site Assessments (LOS) have been conducted, the results of which are reported in this document.

1.2 Scope

For the purposes of this report and the scope of work undertaken in the assessment contained within, the CNS being considered is defined as:

- NATS Great Dun Fell Radar
- NATS Lowther Hill Radar
- Glasgow Prestwick Airport (GPA) Terma Radar

Specific CNS parameters used in the assessments are detailed in Table 1, Table 2 and Table 3 below.

1.2.1 Great Dun Fell Radar Parameters

Parameter	Value
Coordinates	54°41'02.8"N, 2°27'03.1"W
Peak Power	60 kilowatts (kW)
Frequency	2800 megahertz (MHz)
Antenna Gain	34 decibels (dB) relative to isotropic (dBi)
Antenna Electrical Centre Height	16.1 meters (m) Above Ground Level (AGL)

Table 1 - Great Dun Fell Radar Parameters

1.2.2 Lowther Hill Radar Parameters

Parameter	Value
Coordinates	55°22'40.0"N, 3°45'10.8"W
Peak Power	40 kW
Frequency	1300 MHz
Antenna Gain	38 dBi
Antenna Electrical Centre Height	15m AGL

Table 2 - Lowther Hill Radar Parameters

1.2.3 GPA Terma Radar Parameters

Parameter	Value
Coordinates	55°30'08"N, 004°35'02"W
Peak Power	6 kW
Frequency	9100 MHz
Antenna Gain	37 dBi
Antenna Electrical Centre Height	22.3m AGL

Table 3 - GPA Terma Radar Parameters

1.2.4 The Development

For the purposes of this report and the scope of work undertaken in the assessments contained within, the Development are defined as the Breezy Hill Wind Farm consisting of twenty (20) WTGs with a max blade tip height of 149.9m AGL. Specific WTG parameters and geolocations used in the assessments are detailed in Table 4 below.

WTG	Easting	Northing	Max Tip Height (m) AGL
T01	247271	614508	149.9
T02	247620	614116	149.9
T03	247194	613858	149.9
T04	247590	613695	149.9

WTG	Easting	Northing	Max Tip Height (m) AGL
T05	248105	613774	149.9
T06	248414	613503	149.9
T07	248756	613253	149.9
T08	248959	612926	149.9
Т09	247210	613183	149.9
T10	247555	612926	149.9
T11	248064	612898	149.9
T12	248400	612655	149.9
T13	246865	612263	149.9
T14	247549	612303	149.9
T15	247872	611984	149.9
T16	246335	611844	149.9
T17	246752	611639	149.9
T18	247459	610783	149.9
T19	247556	611130	149.9
T20	247338	611513	149.9

Table 4 - Breezy Hill Wind Farm Parameters

1.2.5 Requirement

The Developer has commissioned a single specific type of technical assessment to be conducted. The assessment is detailed in the respective section of this document, as follows:

• Section 2 - Radar LOS Assessment

LOS assessment of the Developments against the in-scope CNS using industry standard Radio Frequency (RF) Planning tools.

1.3 Abbreviations

The following abbreviations are used within this document:

Abbreviation	Meaning
AGL	Above Ground Level

Abbreviation	Meaning
ANSP	Air Navigation Service Providers
ATC	Air Traffic Control
ATS	Air Traffic Services
CAA	Civil Aviation Authority
CNS	Communications Navigation and Surveillance
dBi	decibels
dBi	dB relative to isotropic
EIA	Environment Impact Assessment
GPA	Glasgow Prestwick Airport
HTZ Comms	ATDI HTZ Communications
km	kilometres
kW	kilowatts
Ltd	Limited
LOS	Line of Site Assessments
MHz	megahertz
MHz	meters
Osprey	Osprey Consulting Services Limited
RF	Radio Frequency
SME	Subject Matter Expert
the Developer	Brockwell Energy Ltd
the Development	Breezy Hill Wind Farm
WTG	Wind Turbine Generators

Table 5 - Abbreviations

2 Radar Line of Sight Assessment

2.1 Introduction

This section presents the Radar LOS Assessment using composite optical line of site functions, coupled with RF propagation and Fresnel zone calculations in ATDI HTZ Communications (HTZ Comms) which is an industry standard RF network planning toolset with extensive RF Propagation analysis and modelling capabilities. Analysis has been conducted of point-to-point visibility between the In-Scope CNS and the individual WTGs of the proposed Development being considered.

2.2 Overview

LOS in its most simplistic form is a calculation to determine whether one object can see another in a direct path. A WTG presents reflecting surfaces on which a radar transmitting energy can be returned and processed from. If a radar can see a WTG, then it will most likely be processed and cause an impact to the radar's ability to determine valid targets.

Radars operate by transmitting pulses of RF energy as a waveform. RF waveforms do not just propagate in straight 'optical' lines, but rather it spreads after it leaves the antenna. This spread is known as the Fresnel zones. Objects which appear in a Fresnel zone can cause in phase or out of phase reflections of the RF waveform.

Additionally, to better understand whether a reflecting object will be seen by a radar, consideration must also be made of interlaying terrain and the curvature of the Earth.

Osprey has extensive experience of modelling Radar LOS using HTZ Comms. Our assessment considers optical line of site, the upper Fresnel zone, the Earth's curvature and terrain.

2.3 Scope

The scope of the LOS assessment undertaken, is against the following In-Scope CNS systems:

- Great Dun Fell Radar
- Lowther Hill Radar
- GPA Terma Radar

2.4 Methodology

2.4.1 LOS Assessment

Each WTG is assessed for visibility against the In-Scope CNS. An example of a resultant profile path is depicted in Figure 1 below:

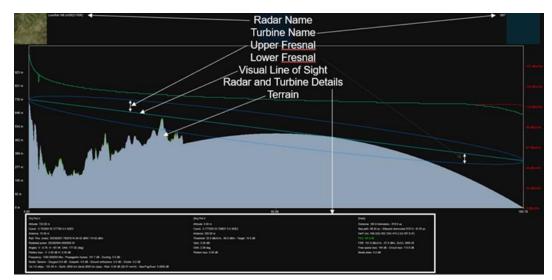


Figure 1 - Example LOS Profile Path

Profile paths were individually evaluated by a Subject Matter Expert (SME) who determined the results as presented in Section 2.5.

2.5 Results

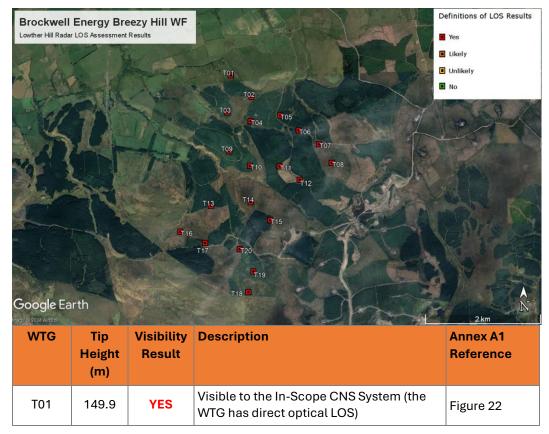
Summary results of the LOS assessments conducted against the Development are presented in the following sections. Visibility results of each WTG are determined to be one of the following:

- Yes (Red) Visible to the In-Scope CNS System (the WTG has direct optical LOS)
- Likely (Amber) Likely to be visible to the In-Scope CNS System (the WTG does not have direct optical LOS, but the interlaying terrain intersects less than or equal to 60% of the upper Fresnel zone)
- **Unlikely** (Yellow) Unlikely to be visible to the In-Scope CNS System (the wind turbine does not have direct optical LOS, but the interlaying terrain intersects more than 60% but less 100% of the upper Fresnel zone)
- **No** (Green) Not visible to the In-Scope CNS System (the wind turbine generator does not have direct optical LOS as the interlaying terrain intersects more than 100% of the upper Fresnel zone).

6

2.5.1 Great Dun Fell Radar – LOS Results

WTG	Tip Height (m)	Visibility Result	Description	Annex A1 Reference
T01	149.9	NO	Not visible to the In-Scope CNS System (the WTG does not have direct optical LOS)	Figure 2
T02	149.9	NO	Not visible to the In-Scope CNS System (the WTG does not have direct optical LOS)	Figure 3
T03	149.9	NO	Not visible to the In-Scope CNS System (the WTG does not have direct optical LOS)	Figure 4
T04	149.9	NO	Not visible to the In-Scope CNS System (the WTG does not have direct optical LOS)	Figure 5
T05	149.9	NO	Not visible to the In-Scope CNS System (the WTG does not have direct optical LOS)	Figure 6
T06	149.9	NO	Not visible to the In-Scope CNS System (the WTG does not have direct optical LOS)	Figure 7
T07	149.9	NO	Not visible to the In-Scope CNS System (the WTG does not have direct optical LOS)	Figure 8
T08	149.9	NO	Not visible to the In-Scope CNS System (the WTG does not have direct optical LOS)	Figure 9
T09	149.9	NO	Not visible to the In-Scope CNS System (the WTG does not have direct optical LOS)	Figure 10
T10	149.9	NO	Not visible to the In-Scope CNS System (the WTG does not have direct optical LOS)	Figure 11
T11	149.9	NO	Not visible to the In-Scope CNS System (the WTG does not have direct optical LOS)	Figure 12
T12	149.9	NO	Not visible to the In-Scope CNS System (the WTG does not have direct optical LOS)	Figure 13


7

WTG	Tip Height (m)	Visibility Result	Description	Annex A1 Reference
T13	149.9	NO	Not visible to the In-Scope CNS System (the WTG does not have direct optical LOS)	Figure 14
T14	149.9	NO	Not visible to the In-Scope CNS System (the WTG does not have direct optical LOS)	Figure 15
T15	149.9	NO	Not visible to the In-Scope CNS System (the WTG does not have direct optical LOS)	Figure 16
T16	149.9	NO	Not visible to the In-Scope CNS System (the WTG does not have direct optical LOS)	Figure 17
T17	149.9	NO	Not visible to the In-Scope CNS System (the WTG does not have direct optical LOS)	Figure 18
T18	149.9	NO	Not visible to the In-Scope CNS System (the WTG does not have direct optical LOS)	Figure 19
T19	149.9	NO	Not visible to the In-Scope CNS System (the WTG does not have direct optical LOS)	Figure 20
T20	149.9	NO	Not visible to the In-Scope CNS System (the WTG does not have direct optical LOS)	Figure 21

Table 6 - Great Dun Fell Radar - LOS Results

2.5.2 Lowther Hill Radar – LOS Results

Brockwell Energy - Breezy Hill Wind Farm | Radar Line of Sight Assessment Report | Radar Line of Sight Assessment | 72049 001 | Issue 1.0



WTG	Tip Height (m)	Visibility Result	Description	Annex A1 Reference
T02	149.9	YES	Visible to the In-Scope CNS System (the WTG has direct optical LOS)	Figure 23
Т03	149.9	YES	Visible to the In-Scope CNS System (the WTG has direct optical LOS)	Figure 24
T04	149.9	YES	Visible to the In-Scope CNS System (the WTG has direct optical LOS)	Figure 25
T05	149.9	YES	Visible to the In-Scope CNS System (the WTG has direct optical LOS)	Figure 26
T06	149.9	YES	Visible to the In-Scope CNS System (the WTG has direct optical LOS)	Figure 27
T07	149.9	YES	Visible to the In-Scope CNS System (the WTG has direct optical LOS)	Figure 28
T08	149.9	YES	Visible to the In-Scope CNS System (the WTG has direct optical LOS)	Figure 29
Т09	149.9	YES	Visible to the In-Scope CNS System (the WTG has direct optical LOS)	Figure 30
T10	149.9	YES	Visible to the In-Scope CNS System (the WTG has direct optical LOS)	Figure 31
T11	149.9	YES	Visible to the In-Scope CNS System (the WTG has direct optical LOS)	Figure 32
T12	149.9	YES	Visible to the In-Scope CNS System (the WTG has direct optical LOS)	Figure 33
T13	149.9	YES	Visible to the In-Scope CNS System (the WTG has direct optical LOS)	Figure 34
T14	149.9	YES	Visible to the In-Scope CNS System (the WTG has direct optical LOS)	Figure 35
T15	149.9	YES	Visible to the In-Scope CNS System (the WTG has direct optical LOS)	Figure 36
T16	149.9	YES	Visible to the In-Scope CNS System (the WTG has direct optical LOS)	Figure 37
T17	149.9	YES	Visible to the In-Scope CNS System (the WTG has direct optical LOS)	Figure 38
T18	149.9	YES	Visible to the In-Scope CNS System (the WTG has direct optical LOS)	Figure 19
T19	149.9	YES	Visible to the In-Scope CNS System (the WTG has direct optical LOS)	Figure 40
T20	149.9	YES	Visible to the In-Scope CNS System (the WTG has direct optical LOS)	Figure 41

Table 7 - Lowther Hill Radar - LOS Results

2.5.3 GPA Terma Radar – LOS Results

WTG	Tip Height (m)	Visibility Result	Description	Annex A1 Reference
T01	149.9	YES	Visible to the In-Scope CNS System (the WTG has direct optical LOS)	Figure 42
T02	149.9	YES	Visible to the In-Scope CNS System (the WTG has direct optical LOS)	Figure 43
T03	149.9	YES	Visible to the In-Scope CNS System (the WTG has direct optical LOS)	Figure 44
T04	149.9	YES	Visible to the In-Scope CNS System (the WTG has direct optical LOS)	Figure 45
T05	149.9	YES	Visible to the In-Scope CNS System (the WTG has direct optical LOS)	Figure 46
T06	149.9	YES	Visible to the In-Scope CNS System (the WTG has direct optical LOS)	Figure 47
T07	149.9	YES	Visible to the In-Scope CNS System (the WTG has direct optical LOS)	Figure 48
T08	149.9	YES	Visible to the In-Scope CNS System (the WTG has direct optical LOS)	Figure 49
T09	149.9	YES	Visible to the In-Scope CNS System (the WTG has direct optical LOS)	Figure 50
T10	149.9	YES	Visible to the In-Scope CNS System (the WTG has direct optical LOS)	Figure 51
T11	149.9	YES	Visible to the In-Scope CNS System (the WTG has direct optical LOS)	Figure 52
T12	149.9	YES	Visible to the In-Scope CNS System (the WTG has direct optical LOS)	Figure 53

Brockwell Energy - Breezy Hill Wind Farm | Radar Line of Sight Assessment Report | Radar Line of Sight Assessment | 72049 001 | Issue 1.0

10

WTG	Tip Height (m)	Visibility Result	Description	Annex A1 Reference
T13	149.9	YES	Visible to the In-Scope CNS System (the WTG has direct optical LOS)	Figure 54
T14	149.9	YES	Visible to the In-Scope CNS System (the WTG has direct optical LOS)	Figure 55
T15	149.9	YES	Visible to the In-Scope CNS System (the WTG has direct optical LOS)	Figure 56
T16	149.9	YES	Visible to the In-Scope CNS System (the WTG has direct optical LOS)	Figure 57
T17	149.9	YES	Visible to the In-Scope CNS System (the WTG has direct optical LOS)	Figure 58
T18	149.9	YES	Visible to the In-Scope CNS System (the WTG has direct optical LOS)	Figure 59
T19	149.9	YES	Visible to the In-Scope CNS System (the WTG has direct optical LOS)	Figure 60
T20	149.9	YES	Visible to the In-Scope CNS System (the WTG has direct optical LOS)	Figure 61

Table 8 - GPA Terma Radar - LOS Results

2.6 Conclusions

The Radar LOS assessments conducted conclude that all WTGs within the Development are expected to have a direct optical visibility to the Lowther Hill and GPA Terma Radars and therefore without suitable mitigations might cause an impact upon the Air Traffic Services (ATS) provided by the respective ANSP.

None of the WTGs of the Development will be visible to the Great Dun Fell Radar.

2.7 Recommendations

Osprey recommends that NATS and GPA as the respective Air Navigation Service Providers operating the affected radars, review the results of this assessment against their operational coverage areas and identify suitable and appropriate mitigations that could reduce the operational impacts to a satisfactory level.

11

A1 LOS Terrain Elevation Profiles

A1.1 Great Dun Fell Radar LOS Assessment Profiles for the Development

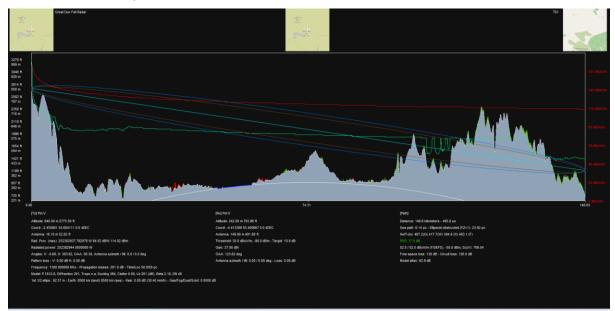


Figure 2 - Great Dun Fell Radar LOS Profile to T01

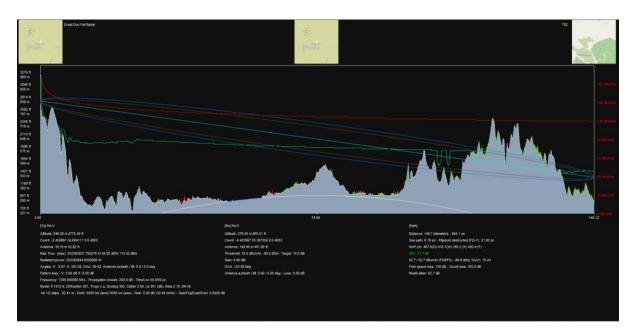


Figure 3 - Great Dun Fell Radar LOS Profile to T02

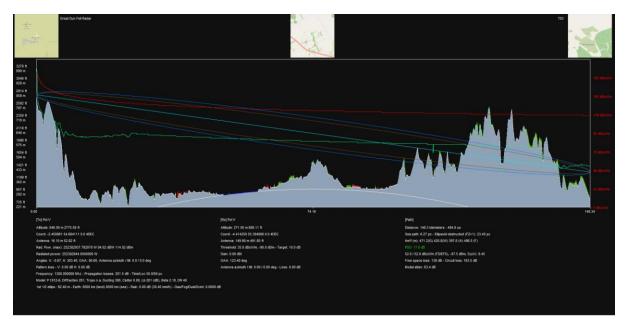


Figure 4 - Great Dun Fell Radar LOS Profile to T03

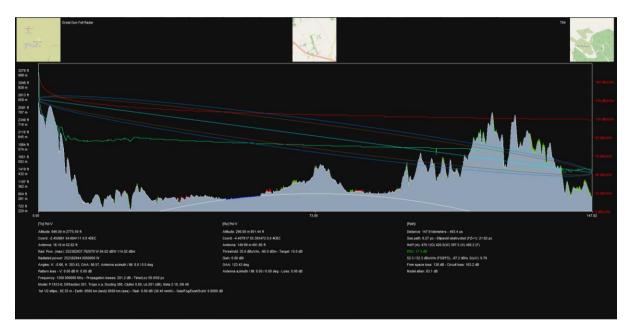


Figure 5 - Great Dun Fell Radar LOS Profile to T04

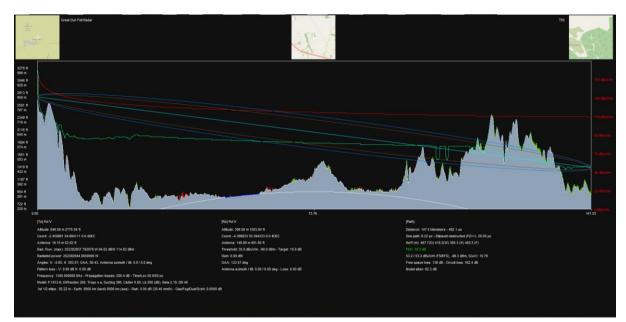


Figure 6 - Great Dun Fell Radar LOS Profile to T05

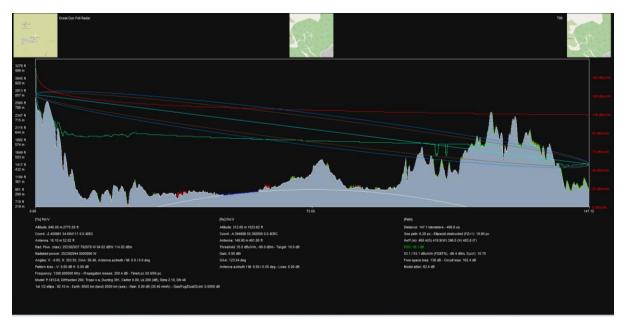


Figure 7 - Great Dun Fell Radar LOS Profile to T06

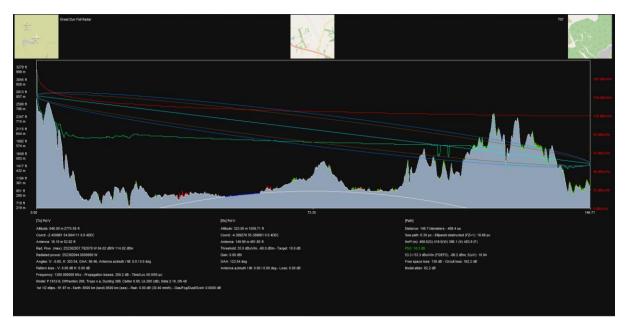


Figure 8 - Great Dun Fell Radar LOS Profile to T07

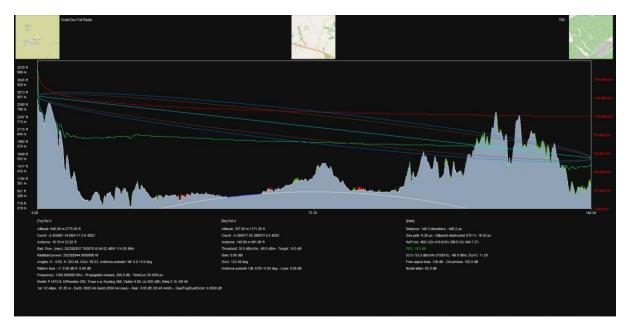


Figure 9 - Great Dun Fell Radar LOS Profile to T08

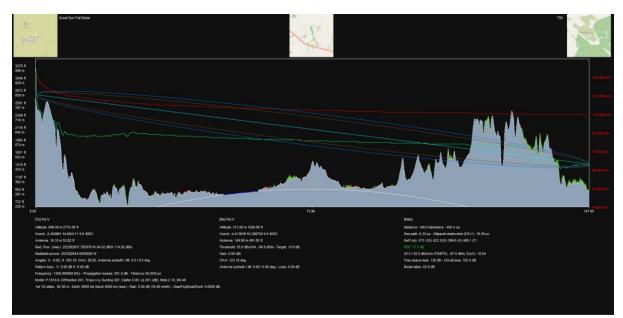


Figure 10 - Great Dun Fell Radar LOS Profile to T09

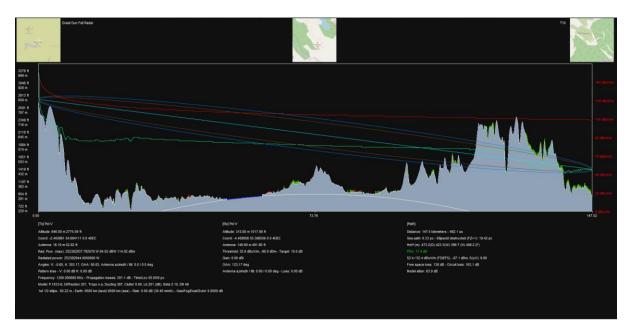


Figure 11 - Great Dun Fell Radar LOS Profile to T10

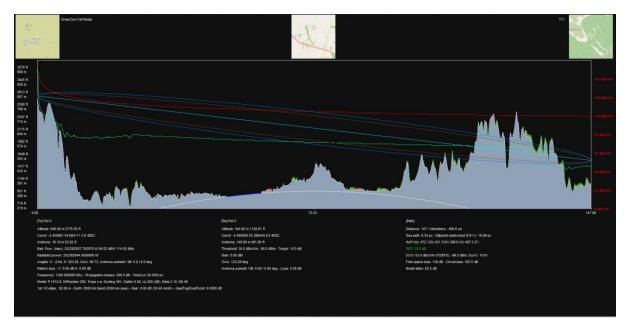


Figure 12 - Great Dun Fell Radar LOS Profile to T11

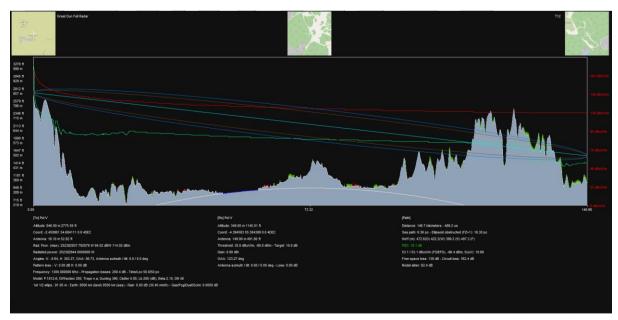


Figure 13 - Great Dun Fell Radar LOS Profile to T12

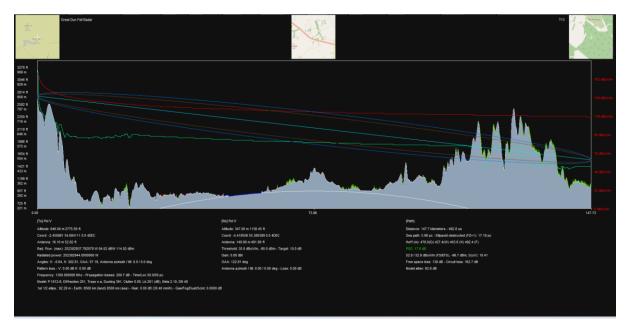


Figure 14 - Great Dun Fell Radar LOS Profile to T13

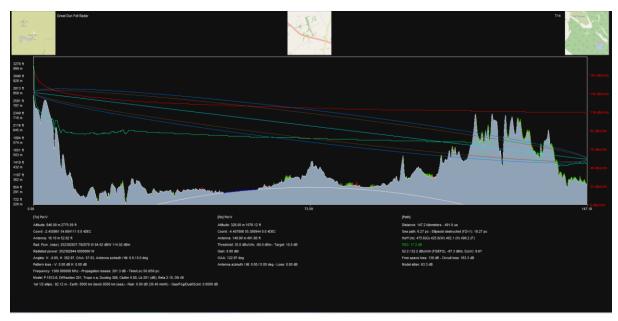


Figure 15 - Great Dun Fell Radar LOS Profile to T14

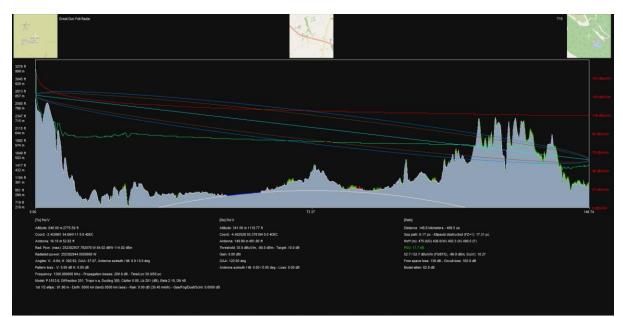


Figure 16 - Great Dun Fell Radar LOS Profile to T15

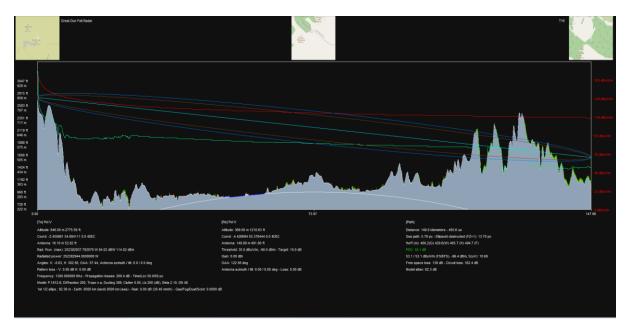


Figure 17 - Great Dun Fell Radar LOS Profile to T16

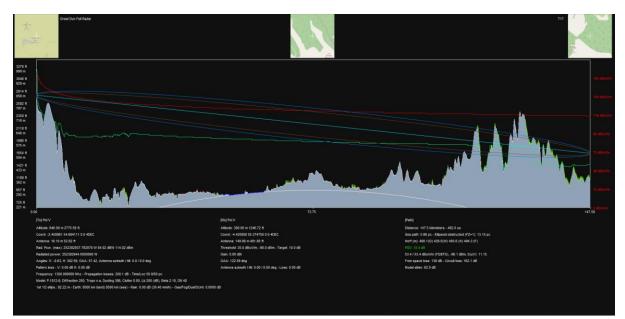


Figure 18 - Great Dun Fell Radar LOS Profile to T17

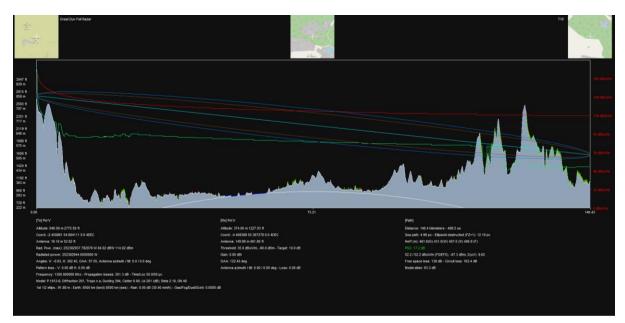


Figure 19 - Great Dun Fell Radar LOS Profile to T18

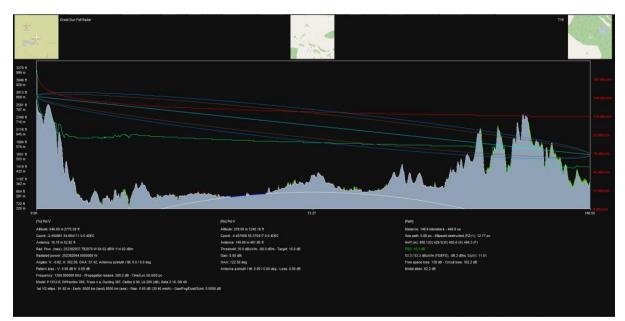


Figure 20 - Great Dun Fell Radar LOS Profile to T19

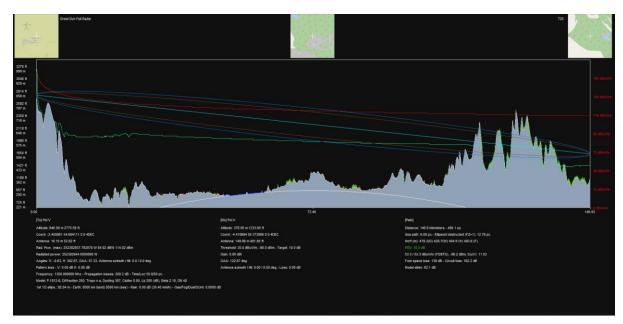


Figure 21 - Great Dun Fell Radar LOS Profile to T20

A1.2 Lowther Hill Radar LOS Assessment Profiles for the Development

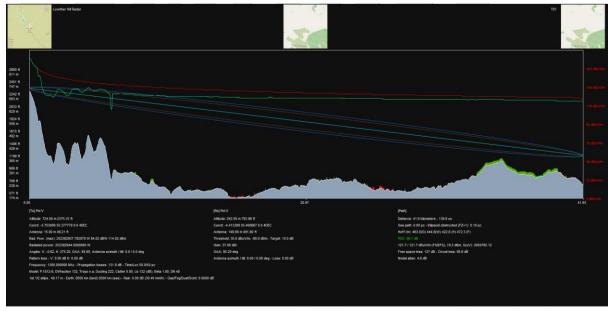


Figure 22 – Lowther Hill Radar LOS Profile to T01

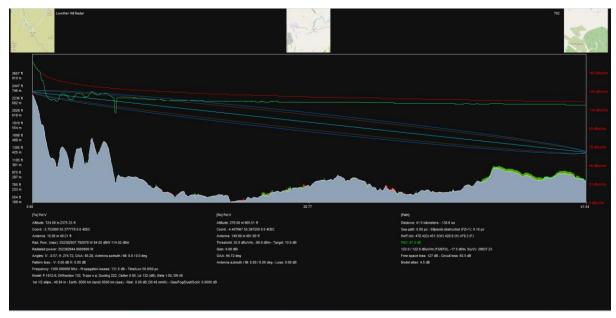


Figure 23 - Lowther Hill Radar LOS Profile to T02

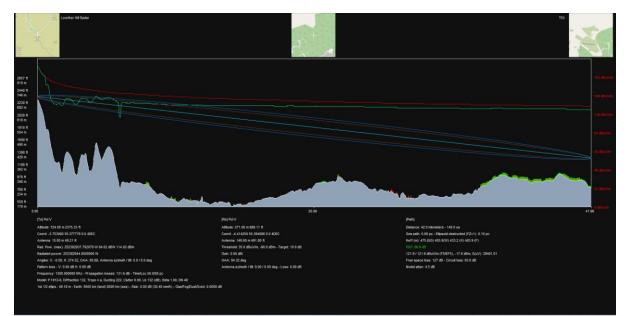


Figure 24 - Lowther Hill Radar LOS Profile to T03

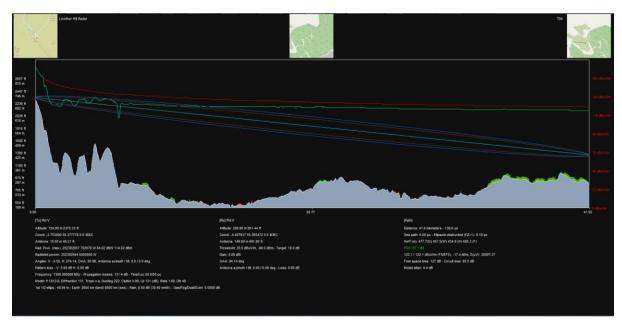


Figure 25 - Lowther Hill Radar LOS Profile to T04

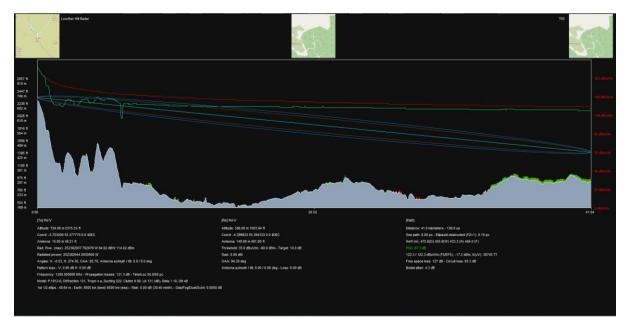


Figure 26 - Lowther Hill Radar LOS Profile to T05

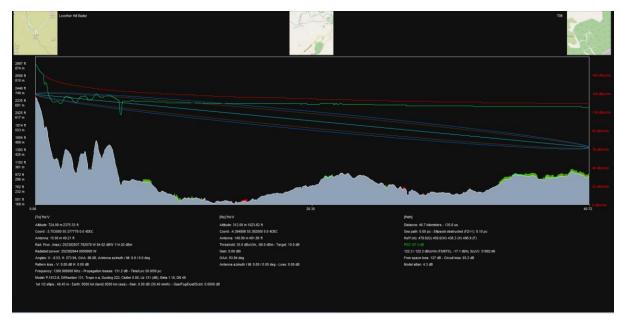


Figure 27 - Lowther Hill Radar LOS Profile to T06

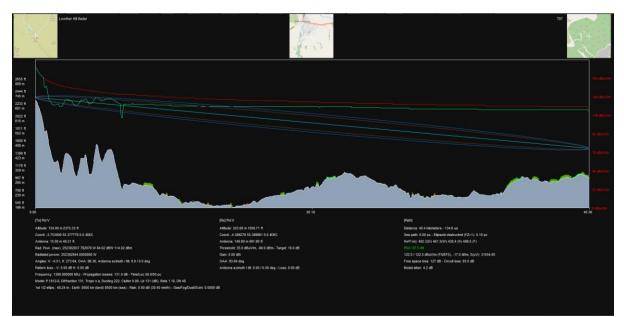


Figure 28 - Lowther Hill Radar LOS Profile to T07

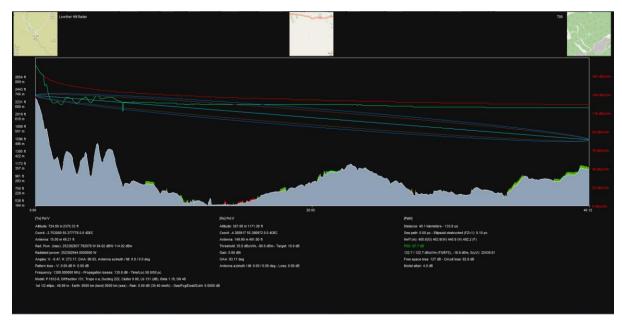


Figure 29 - Lowther Hill Radar LOS Profile to T08

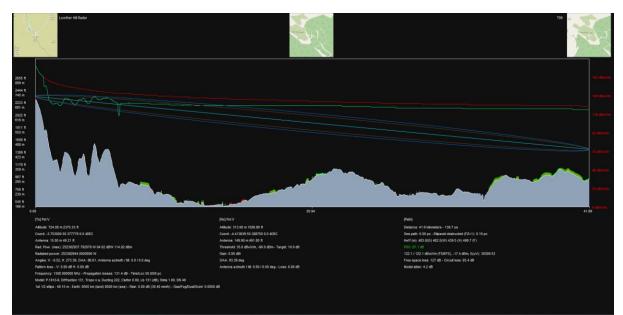


Figure 30 - Lowther Hill Radar LOS Profile to T09

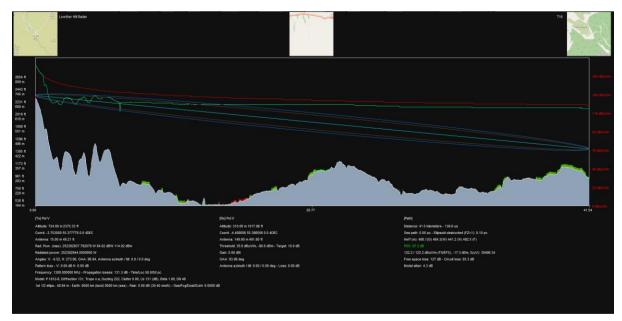


Figure 31 - Lowther Hill Radar LOS Profile to T10

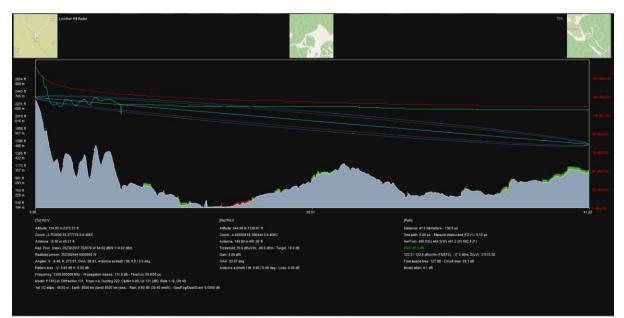


Figure 32 - Lowther Hill Radar LOS Profile to T11

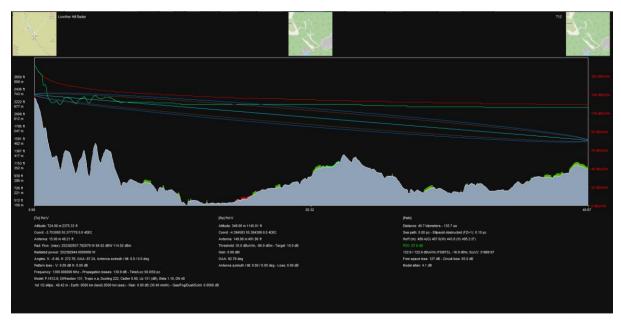


Figure 33 - Lowther Hill Radar LOS Profile to T12

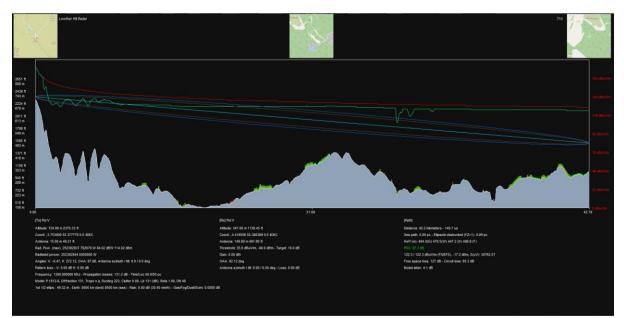


Figure 34 - Lowther Hill Radar LOS Profile to T13

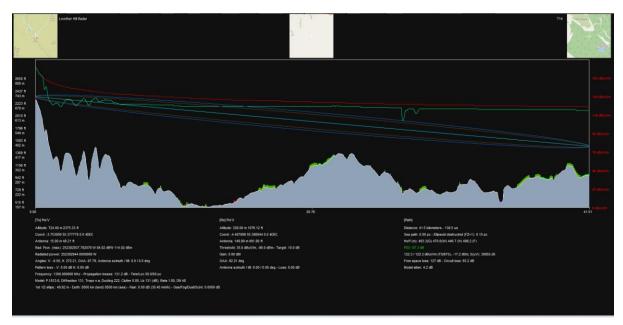


Figure 35 - Lowther Hill Radar LOS Profile to T14

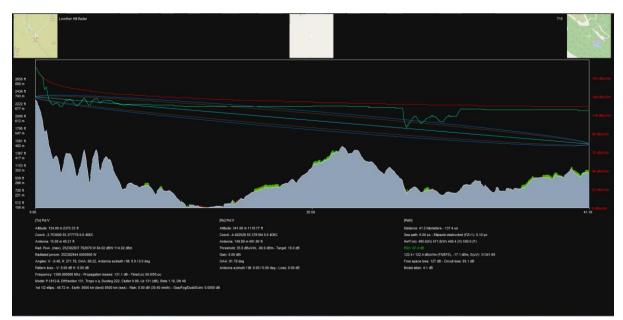


Figure 36 - Lowther Hill Radar LOS Profile to T15

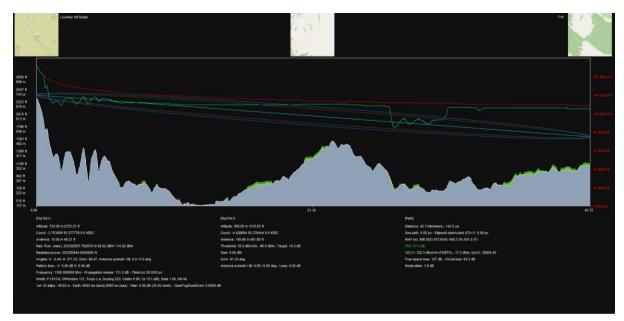


Figure 37 - Lowther Hill Radar LOS Profile to T16

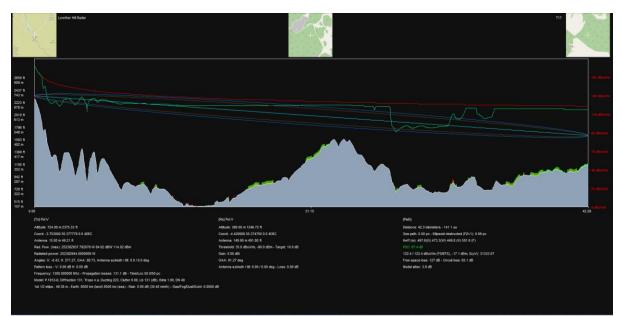


Figure 38 - Lowther Hill Radar LOS Profile to T17

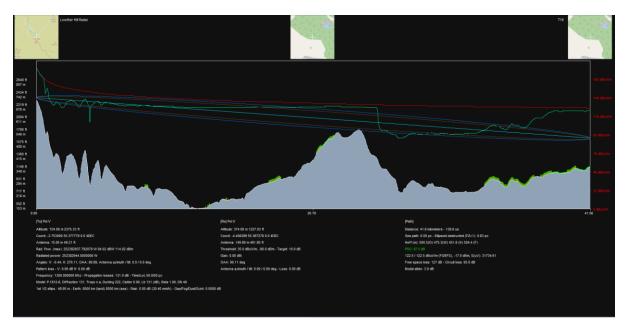


Figure 39 - Lowther Hill Radar LOS Profile to T18

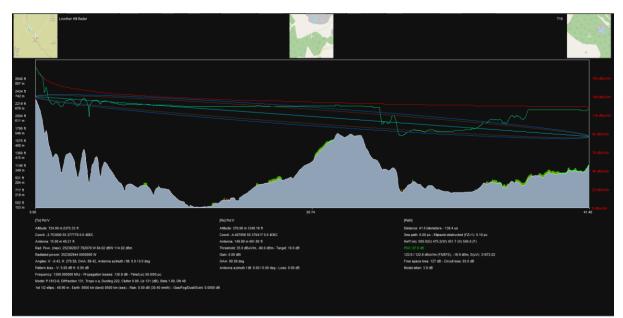


Figure 40 - Lowther Hill Radar LOS Profile to T19

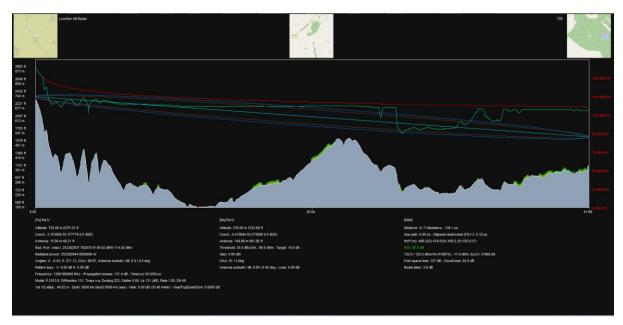


Figure 41 - Lowther Hill Radar LOS Profile to T20

A1.3 GPA Terma Radar LOS Assessment Profiles for the Development



Figure 42 – GPA Terma Radar LOS Profile to T01

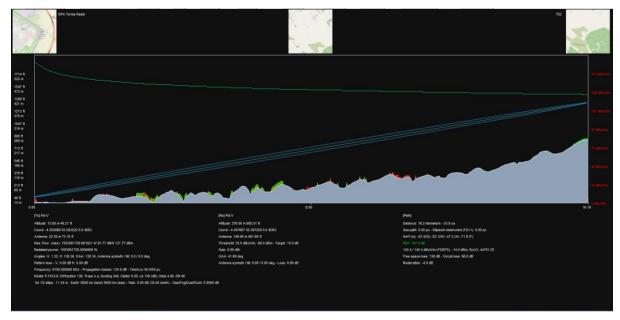


Figure 43 - GPA Terma Radar LOS Profile to T02

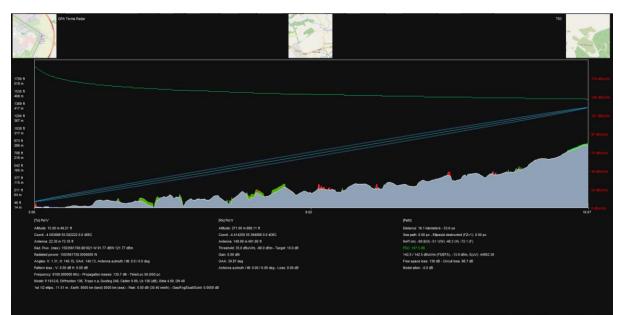


Figure 44 - GPA Terma Radar LOS Profile to T03

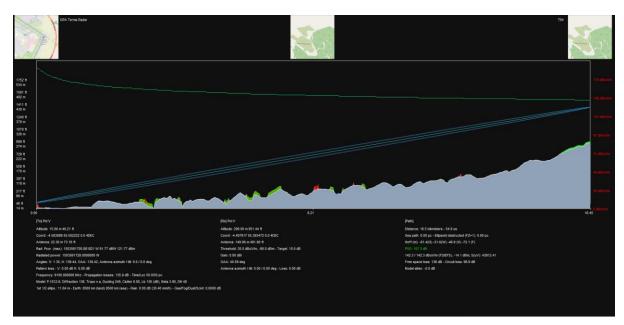


Figure 45 - GPA Terma Radar LOS Profile to T04

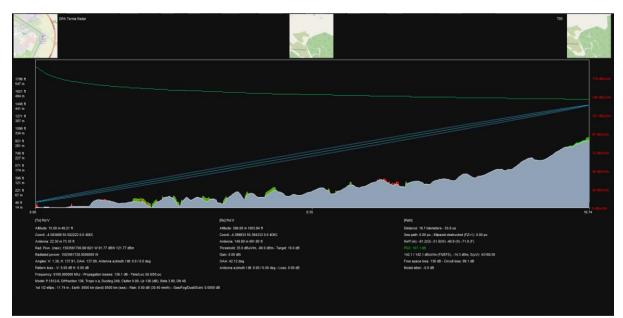


Figure 46 - GPA Terma Radar LOS Profile to T05

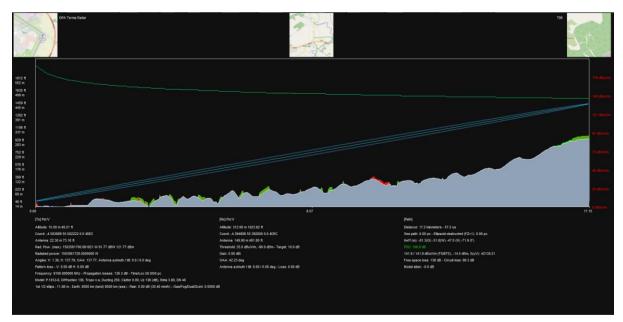


Figure 47 - GPA Terma Radar LOS Profile to T06

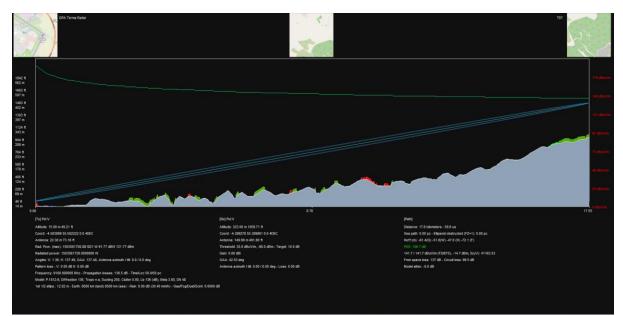


Figure 48 - GPA Terma Radar LOS Profile to T07

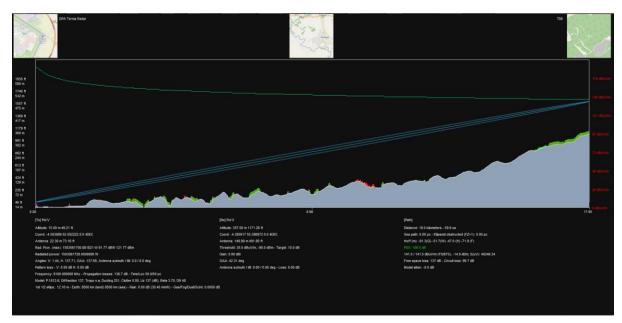


Figure 49 - GPA Terma Radar LOS Profile to T08

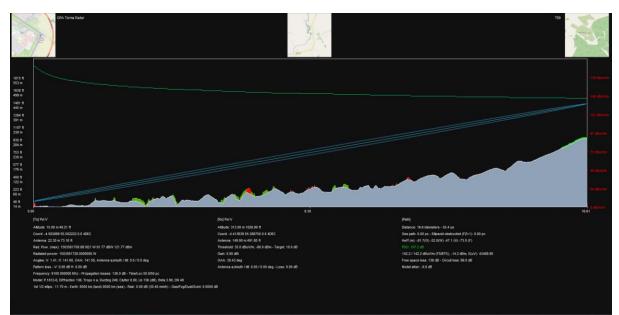


Figure 50 - GPA Terma Radar LOS Profile to T09

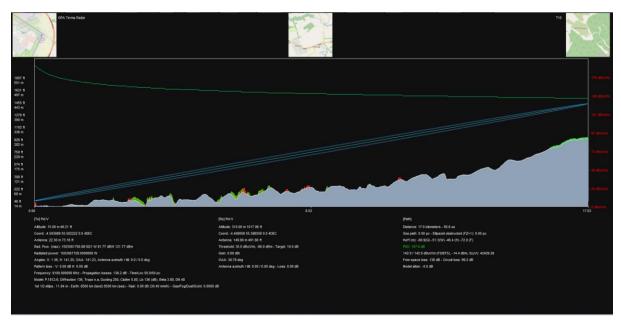


Figure 51 - GPA Terma Radar LOS Profile to T10

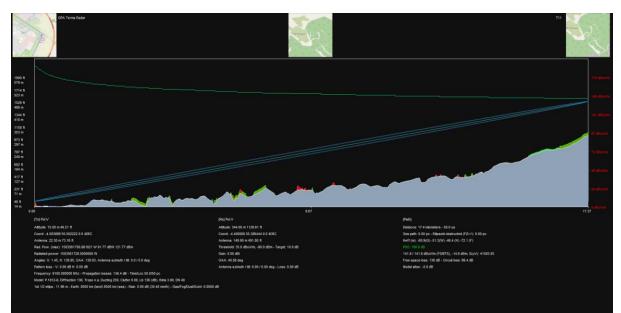


Figure 52 - GPA Terma Radar LOS Profile to T11

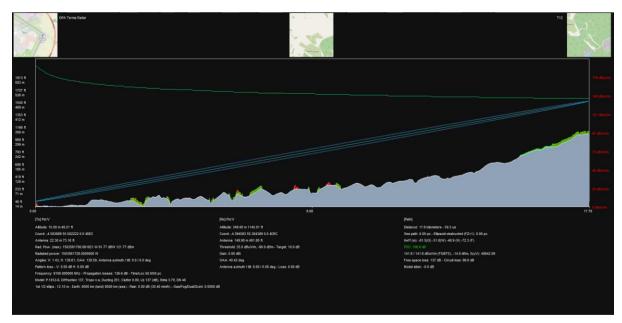


Figure 53 - GPA Terma Radar LOS Profile to T12

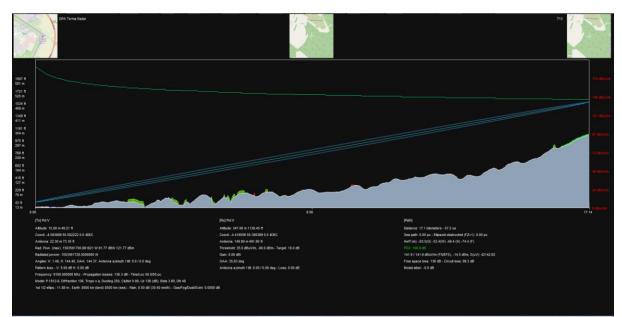


Figure 54 - GPA Terma Radar LOS Profile to T13

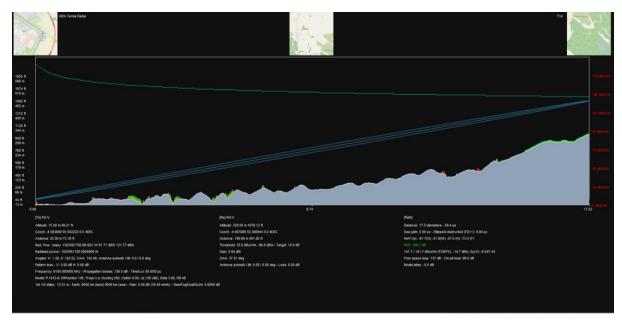


Figure 55 - GPA Terma Radar LOS Profile to T14

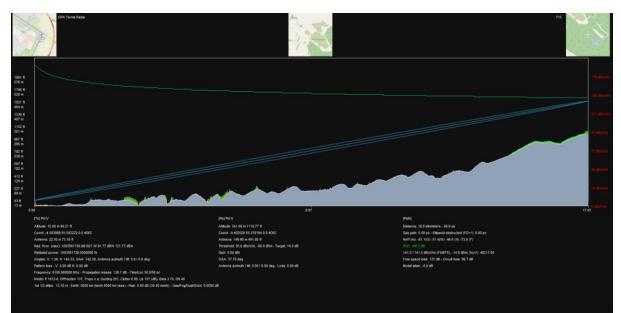


Figure 56 - GPA Terma Radar LOS Profile to T15

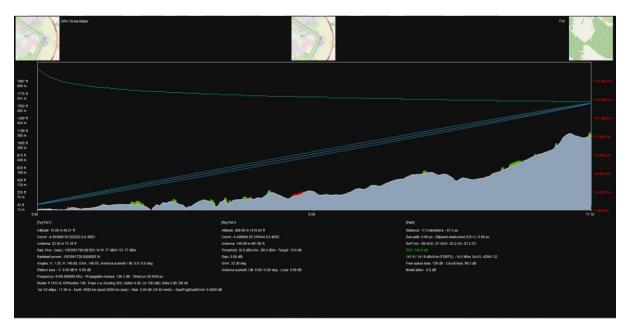


Figure 57 - GPA Terma Radar LOS Profile to T16

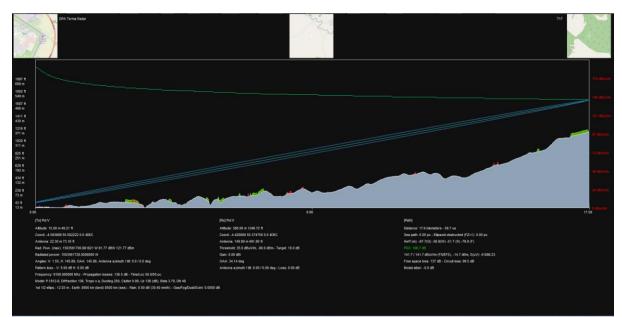


Figure 58 - GPA Terma Radar LOS Profile to T17

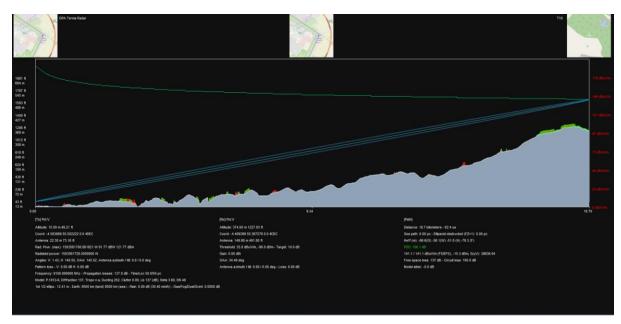


Figure 59 - GPA Terma Radar LOS Profile to T18

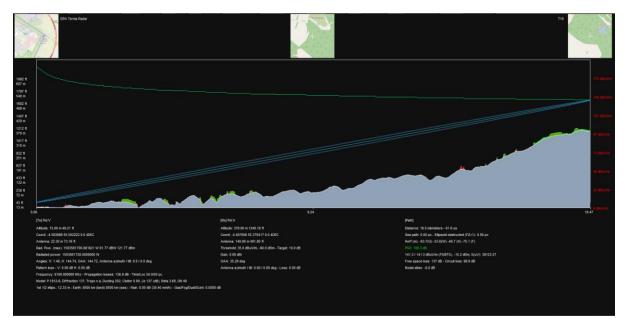


Figure 60 - GPA Terma Radar LOS Profile to T19

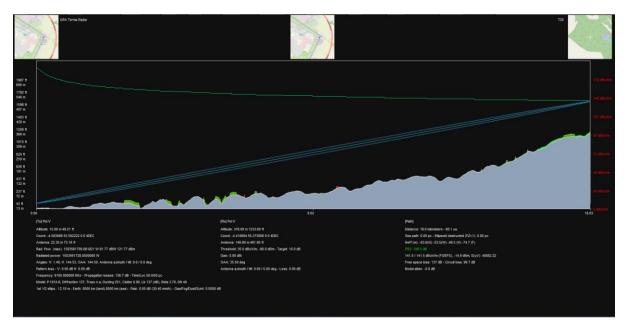


Figure 61 - GPA Terma Radar LOS Profile to T20